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SUMMARY

This paper presents a numerical method that couples the incompressible Navier–Stokes equations with
the level set method in a curvilinear co-ordinate system for study of free surface �ows. The �nite
volume method is used to discretize the governing equations on a non-staggered grid with a four-step
fractional step method. The free surface �ow problem is converted into a two-phase �ow system on a
�xed grid in which the free surface is implicitly captured by the zero level set. We compare di�erent
numerical schemes for advection of the level set function in a generalized curvilinear format, including
the third order quadratic upwind interpolation for convective kinematics (QUICK) scheme, and the
second and third order essentially non-oscillatory (ENO) schemes. The level set equations of evolution
and reinitialization are validated with benchmark cases, e.g. a stationary circle, a rotating slotted disk
and stretching of a circular �uid element. The coupled system is then applied to a travelling solitary
wave, and two- and three-dimensional dam breaking problems. Some interesting free surface phenomena
are revealed by the computational results, such as, the large free surface vortices, air entrapment and
splashing of the water surge front. The computational results are in excellent agreement with theoretical
predictions and experimental data, where they are available. Copyright ? 2003 John Wiley & Sons,
Ltd.

KEY WORDS: free surface �ows; level set method; fractional step method; solitary wave; broken dam

1. INTRODUCTION

Unsteady �ows involving free surfaces receive special attention in computational �uid dy-
namics because of the challenge in dealing with moving surfaces. A variety of numerical
methods have been developed over past four decades. They can be classi�ed into two gen-
eral categories: moving-grid and �xed-grid methods. The moving-grid method is basically a
Lagrange-type method that treats the free surface as the boundary of a moving surface-�tted
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grid which can be either structured or unstructured, including strictly Lagrangian methods, free
Lagrangian methods, mixed Lagrangian–Eulerian methods, etc. [1]. The free surface remains
sharp and is computed precisely in the moving-grid method. When grids are highly distorted
due to a strongly deformed free surface topology, rezoning (or remeshing) becomes inevitable.
Methods by using rezoning are referred to as arbitrary Lagrangian–Eulerian (ALE) methods
�rst developed by Hirt et al. [2]. Since �ow information in the new grid is transferred from
the old grid, excessive numerical di�usion may be induced by frequent rezoning.
Fixed-grid methods can be further divided into two categories: surface-tracking method and

surface-capturing method. Both make use of a �xed stationary grid covering both the liquid
and gas regions. In the surface-tracking method the free surface is explicitly identi�ed and
tracked by means of pre-de�ned markers or interface-�tted grid cells. In the surface-capturing
method the free surface is implicitly captured by a contour of a certain scalar function. In
most surface-tracking methods the governing equations are solved only for the liquid and
the free surface grid cells, while in the surface-capturing method the equations are solved
on both the liquid and gas regions. The surface-tracking method has many variants including
front-tracking methods and marker methods. The front-tracking methods by Glimm et al. [3]
and Unverdi and Tryggvason [4] represent the interface by a connected set of points. An
additional unstructured grid is constructed in the vicinity of the interface to explicitly evolve
the interface. Restructuring of the interface grid has to be performed dynamically during
the computation. The marker methods include the marker-and-cell (MAC) method by Har-
low and Welch [5] and the volume-of-�uid (VOF)-family of methods. Both versions track
the free surface with volume markers. In MAC-class methods, the markers are Lagrangian
massless particles that move with the local �uid velocity to update the free surface front.
The VOF-family methods employ an auxiliary function, namely the volume fraction or color
function, as the volume marker. This auxiliary function is then advected with the local ve-
locity �eld to simulate the free surface propagation. One important procedure in the VOF
algorithms is that the surface has to be reconstructed in terms of the volume fraction. The
choice of di�erent reconstructed interface geometry distinguishes members of the VOF-family,
e.g. SLIC (simple line interface calculation) method by Noh and Woodward [6], SOLA-VOF
by Hirt and Nichols [7], PLIC (piecewise linear interface calculation) by Youngs [8], etc.
VOF-family methods have been widely used in both academic and industrial communities be-
cause of its relatively simple implementation and robustness in tackling varieties of interface
topologies.
There are a large class of numerical methods based on the surface-capturing approach.

Among them are arti�cial compressibility method, phase �eld methods and level set method,
etc. The scalar functions used to implicitly capture the free surface are density in the arti�cial
compressibility method [9], order parameter in the phase �eld method [10] and the level set
function in the level set method (LSM) devised by Osher and Sethian [11]. The original notion
of LSM is to de�ne a smooth (at least Lipschitz continuous) function �(x; t) (level set) that
represents the interface at �(x; t)=0 (zero level set) [12]. The level sets are advected by
the local velocity �eld. The interface can be captured at any time by locating the zero level
set, which alleviates the burden of increasing grid resolution at the interface in many other
numerical approaches. Usually, � is de�ned as a signed distance function to the interface.
This provides the great convenience of handling topological merging, breaking and even self-
intersecting of interfaces in a natural way by taking advantage of the smoothness of the
level set function. Information about the interface, such as orientation and curvature, can
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be conveniently obtained by examining the zero level set so that surface tension can be
accurately estimated. Surface tension can be either di�used over the interface as a �-function-
like volume force in the momentum equations [13] or exactly treated as a jump condition
incorporated in the pressure Poisson equation [14, 15]. Another advantage of LSM is that the
extension from two to three dimensions is straightforward. LSM has been applied widely in
incompressible �uid mechanics [13, 16–19], detonation shock dynamics [20], combustion [21],
solidi�cation [22], crystal growth [23], boiling [24], etching and deposition [25], to name just
a few applications.
In this paper, we present a numerical method that couples three-dimensional (3D) incom-

pressible Navier–Stokes equations with LSM in a generalized curvilinear co-ordinate system
for study of free surface �ows. The governing equations are discretized by the �nite volume
method on a non-staggered grid with a four-step fractional step method. We compare di�er-
ent numerical schemes for the advection of the level set function in curvilinear co-ordinates,
including the third-order QUICK scheme, the second-order ENO scheme and the third-order
ENO scheme. The numerical schemes for the level set equations of evolution and reinitial-
ization are validated with benchmark cases, including a stationary circle, a rotating slotted
disk and stretching of a circular �uid element. We show the necessity of the third-order ENO
for the accurate capturing of the interface based on the results of benchmark tests. We then
apply and validate the numerical code in several benchmark problems, e.g. a travelling soli-
tary wave, and two-dimensional (2D) and 3D dam breaking problems. In particular, in the
3D dam breaking problem, di�erent boundary conditions in the spanwise direction are applied
to study air entrapment and splashing of the water surge front.
This paper is organized as follows. Section 2 describes the smoothing method of the two-

phase �ow system, the coupling of Navier–Stokes equations with LSM, and the reinitialization
procedure for the level set function and mass conservation. Section 3 presents the Navier–
Stokes solver and numerical methods for the level set function. Section 4 starts with the
single-phase lid-driven cavity �ow for the validation of the four-step fractional step method.
The numerical schemes for level set function are then validated by means of benchmark tests,
such as Zalesak’s problem and the stretched �uid in a swirling shear velocity �eld. Finally,
the coupled system is applied to three free-surface �ows: propagation of a solitary wave, and
breaking of 2D and 3D dams.

2. MATHEMATICAL MODEL

2.1. Smoothing of two-phase �ow system

In the level set method, free surface �ows are modelled as immiscible gas–liquid two-phase
�ows. However, the sharp jumps in density and viscosity at gas–liquid interfaces can cause
numerical instabilities if not treated properly. To ease this problem, �uid properties, such as
density, viscosity, etc., are smeared over a narrow transition zone around the free surface. The
free surface is identi�ed as a zero level set, i.e. �(x; t)=0, where x=(x; z) in two dimensions
or (x; y; z) in three dimensions.
At a free surface, there exist kinematic and dynamic boundary conditions. The kinematic

boundary condition can be interpreted in a Lagrangian way: a particle on the surface al-
ways stays on the surface. This can be expressed in terms of the advection of the level set
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function,

@�
@t
+ u · ∇�=0 (1)

where u=(u; w) in two dimensions or (u; v; w) in three dimensions is the �uid velocity.
Free surface motion is represented by the propagation of the zero level set embedded in the
equation.
The dynamic boundary condition represents the jump in the normal stress at the free surface

balanced by surface tension, known as Laplace–Young equation,

(Sl − Sg) · n=��n (2)

where S=−pI+2�D is the stress tensor, I is the identity matrix, � is the �uid viscosity, D
is the rate of deformation tensor, n is the unit normal to the free surface, � is the coe�cient
of surface tension, � is the total curvature of the free surface, and the subscripts l and g
represent liquid and gas, respectively.
Similar to the approaches employed by Brackbill et al. [26] and Unverdi and Tryggvason

[4], Equation (2) is implemented in the momentum equations as a volume force by distributing
the surface tension smoothly over the transition zone so that there is no longer a jump in the
normal stress at the free surface. The two-phase �ow system can then be treated as a single-
�uid system by applying the single set of Navier–Stokes equations in the whole computational
domain.
The level set function � is initially assigned with a signed distance function,

�=



−d for x∈�gas

0 for x∈� (free surface)
d for x∈�liquid

(3)

where d is the absolute normal distance to the free surface. For immiscible incompressible
�uids, the density and viscosity are taken as constant along the trajectories of �uid particles,
i.e.

D�
Dt
=0;

D�
Dt
=0 (4)

where D=Dt ≡ @=@t + u · ∇ is the material derivative. Numerical instability may be induced
by the direct discretization of Equation (4) because of large density and viscosity jumps,
particularly the density jump. This problem can be eased by smoothing out the density and
viscosity in the transition zone de�ned as |�|6�, where �, the half-thickness of interface, is
typically one or two grid distances. By de�ning an in�nitely di�erentiable smoothed Heaviside
function H (�) [13],

H (�)=



0 if �¡−�
1
2 [1 +

�
� +

1
� sin(

��
� )] if |�|6�

1 if �¿�

(5)
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The density and viscosity are smoothed in such a way that they are (�l+�g)=2 and (�l+�g)=2
at the surface front (�=0), respectively, and

�(�) = �g + (�l − �g)H (�)

�(�) = �g + (�l − �g)H (�)
(6)

The surface tension is spread over the transition zone as a �-function-like volume force in
the momentum equations [16],

��(�)�(�)n

where n and �(�) can be computed in terms of �,

n=
∇�
|∇�|

∣∣∣∣
�=0

�(�) =∇ · n= ∇ · ∇�
|∇�|

∣∣∣∣
�=0

(7)

and the delta function �(�) is obtained by taking the gradient of the smoothed Heaviside
function

�(�)=∇�H (�)=

{
0 if |�|¿�
1
2� [1 + cos(

��
� )] if |�|6�

(8)

Thus, the kinematic and dynamic boundary conditions at free surface are automatically
embedded in the formulation of LSM.

2.2. Coupling of Navier–Stokes equations with level set function

To model immiscible incompressible free surface �ows in complex geometries, we consider the
incompressible Navier–Stokes equations in boundary-�tted curvilinear co-ordinates in which
the boundaries of the physical domain are accurately represented and the boundary conditions
are simply applied in a transformed computational domain. Another advantage of the curvi-
linear system is that numerical �uxes can be conveniently estimated for non-orthogonal grids.
To couple with LSM, the incompressible Navier–Stokes equations are modi�ed with variable
density and viscosity and include a volume force to represent the surface tension:

@Um

@	m
=0 (9)

@(J−1ui)
@t

+
@(Umui)

@	m
=− 1

�(�)
@

@	m

(
J−1 @	m

@xi
p
)
− J−1gi − J−1 ��(�)�(�)∇�

�(�)

+
1

�(�)
@

@	m

(
�(�)Tmn @ui

@	n

)

+
1

�(�)
@

@	m

(
J−1 @	m

@xj
@	n

@xi
�(�)

@uj
@	n

)
(10)
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where ui is the velocity component in Cartesian space, J−1 is the inverse of the Jacobian
de�ned as

det
(

@xi
@	m

)

in which xi and 	m are the components of Cartesian co-ordinates and curvilinear co-ordinates,
respectively, and det represents determinant, gi is the gravitational acceleration component in
i-direction. Um is the volume �ux normal to the surface of constant 	m de�ned as

J−1 @	m

@xj
uj

Tmn is called the mesh skewness tensor,

J−1 @	m

@xj
@	n

@xj

The second to last term on the right-hand side of Equation (10) is the primary viscous force,
while the last term is the subsidiary viscous force due to the variability of viscosity and exists
only in the transition zone. The Cartesian velocity ui is kept as a dependent variable such
that Equation (10) is in a conservative form, as suggested by Zang et al. [27]. This facilitates
discretization of the equations and also eliminates the extra source terms resulting from the
introduction of contravariant velocity.
The curvilinear form of the evolution equation of the level set function, Equation (1), reads

@(J−1�)
@t

+
@(Um�)
@	m

=0 (11)

The motion of the free surface is then embedded in this equation. As the information of level
set function is needed only within the transition zone, it is not necessary to solve Equation
(11) in the whole domain; we solve it only within a narrow band around free surface. For
this reason, it is also called the ‘narrow band’ approach [28].
In summary, LSM is coupled with the variable �uid property Navier–Stokes equations by

solving Equations (6), (7), (10) and (11) together.

2.3. Reinitialization of level set function and mass conservation

A free surface can be mathematically parameterized as a signed distance function (|∇�|=1).
The properties of a free surface, such as the unit normal, curvature, etc., can be derived from
the signed distance function. While � is initialized as a signed distance function from the
free surface, Equation (11) does not ensure � as a signed distance function as time proceeds.
Equation (1) can actually be written in a Hamilton–Jacobi type of equation:

@�
@t
+ un|∇�|=0 (12)

where un= u · n.
However, Equation (12) does not preserve the distance function. In a complex non-uniform

�ow �eld, it is possible for � to develop steep gradients from Equation (12), especially
when the free surface itself has a steep slope. As a consequence, it becomes di�cult to
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maintain a �nite thickness of the transition zone. The computation of the unit normal and
curvature [Equation (7)] is no longer accurate, and the surface tension term becomes a source
of numerical instabilities. For the same reason, the Heaviside function and the delta function
are not in a well-behaved shape any more, which severely distorts the distribution of density
and viscosity in the transition zone. Consequently, a signi�cant loss or gain of mass occurs,
and conservation of mass breaks down.
One cure for this problem is to perform a reinitialization (or redistancing) procedure for �

to recover |∇�|=1. There are basically two algorithms: PDE (partial di�erential equation)-
based approach [13] and geometry-based Fast Marching Method [29] �rstly proposed by
Tsitsklis for optimal trajectory [30]. The former solves a non-linear PDE to steady state by
an iterative method. The latter solves the Eikonal equation by making use of the e�cient
Huygens’ principle. Both algorithms have achieved great success in redistancing. We apply
the PDE-based algorithm in this paper.
The signed distance function can be obtained by solving for the steady solution of the

following PDE

@d
@

+ s(d0)(|∇d| − 1)=0
d0(x; 0)=�(x; t)

(13)

where d(x; 
) shares the same zero level set with �(x; t), 
 is an arti�cial time, s(d0) is the
smoothed sign function de�ned as [31]

s(d0)=
d0√

d0
2 + (|∇d0|�)2

(14)

where � usually is one grid distance.
Equation (13) is a non-linear hyperbolic equation and can be recast as

@d
@

+ F · ∇d= s(d0) (15)

where F= s(d0)∇d=|∇d| is the characteristic velocity pointing outward from the free surface
so that redistancing always starts from the free surface. Since we apply a narrow band LSM
here, we only need to obtain the signed distance function within the transition zone, i.e. only
�=�
 iteration steps are needed, where �
 is the arti�cial time step. If �
 takes a quantity
equal to one grid distance, only one or two iterations are needed depending on the transition
zone width.
In Equation (13), the free surface captured by the zero level set does not move during

the reinitialization procedure in theory because s(0)=0. However, this is not guaranteed in
numerical implementation. Mass error may be induced during the redistancing procedure.
A remedy is to preserve the volume in each cell for one �uid by adding a volume constraint
in Equation (13). The modi�ed equation becomes [32]

@d
@

+ s(d0)(|∇d| − 1)=C�(d)|∇d| (16)
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where

C=
− ∫

�c
s(d0)(1− |∇d|)�(d) d�∫
�c

�2(d)|∇d| d�

�c is the cell volume. After redistancing by Equation (16), � is re-assigned with d and the
next time step starts.

3. NUMERICAL METHODS

3.1. Solver for Navier–Stokes equations

A �nite volume method is employed to solve the Navier–Stokes Equations (10) on a non-
staggered grid, in which ui, p, �, �, � and n are all de�ned at cell centres, except that Um

is de�ned at the centres of cell faces to ensure strong pressure–velocity coupling and enforce
the mass conservation in each cell through Equation (9). A semi-implicit scheme is used for
time marching of Equation (10), in which Crank–Nicolson scheme is used to advance the
diagonal part of the primary viscous terms, while all other terms, including the convective
terms, the surface tension terms, the o�-diagonal part of the primary viscous terms and the
subsidiary viscous terms, are all marched using the second-order Adams–Bashforth scheme.
The resulting formula is

un+1
i − un

i =
�t
J−1

[(
3
2
En

i −
1
2
En−1

i

)
+Gi(pn+1) +

1
2
Dd(un+1

i + un
i )
]

(17)

where En
i =Cn

i +Do(un
i )+Bn

i +Ds(un
i ), Ci represents the i-component of the convective terms,

Dd and Do are the respective diagonal and o�-diagonal di�usion operators of the primary
viscous terms divided by the density, Bi represents the i-component of gravity acceleration and
surface tension forces, Ds is the di�usion operator of the subsidiary viscous force divided by
the density, and Gi is the i-component of the negative gradient operator divided by the density.
The convective term Ci is discretized with the modi�ed QUICK scheme of Perng and Street

[33] in space in which the upwind direction is determined by the volume �ux Um. The spatial
central di�erence is applied to all di�usion terms. Equation (17) is solved with a four-step
fractional step method in the following procedures:
Predictor:(

I − �t
2J−1 Dd

)
(u∗i − un

i )=
�t
J−1

[(
3
2
En

i −
1
2
En−1

i

)
+Gi( n) +Dd(un

i )
]

(18)

where u∗i is the �rst intermediate velocity,  is a pressure-like variable. The operator
(I − (�t=2J−1)Dd) is approximated by the approximate factorization technique [27] such
that the above linear equations can be solved with the tridiagonal-matrix algorithm (TDMA)
or periodic TDMA depending on boundary conditions.
First corrector:

ûi − u∗i =− �t
J−1 Gi( n) (19)

where ûi is the second intermediate velocity.
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Solving for the pressure-like variable:

�
�	l

(
T lm

�(�)
� n+1

�	m

)
=
1
�t

�Û l

�	l
(20)

where � is a di�erencing operator. This is a variable-coe�cient Poisson equation, which is
solved with a multigrid technique [33]. The inner gradient operator is estimated at the cell
faces while the outer divergence operator is estimated at the cell centre.
Second corrector:

un+1
i − ûi=

�t
J−1 Gi( n+1) (21)

The above procedure is also called the four-step time advancement scheme by Choi and
Moin in Reference [34] in which all the spatial derivatives are approximated with the second-
order central di�erencing on a staggered grid. As compared with the fractional step method
by Kim and Moin [35], the pressure gradient is added to the prediction step Equation (18)
and one more correction step Equation (19) is used here. As a result, the relationship between
the pressure-like variable  and the true pressure p becomes

Gi(pn+1) =Gi( n+1)− �t
2J−1 DdGi( n+1 −  n)

=Gi( n+1) +O(�t2) (22)

In general, the implicit time advancement of the di�usion terms results in a splitting error in
fractional step methods, determining the global order of time accuracy. Equation (22) implies
that the pressure-like function  in this four-step fractional step method is of the second-order
temporal accuracy of the real pressure p. The splitting error is as well second-order accurate
in time, seen by summing Equations (18), (19) and (21). For a general three-step fractional
step method, e.g. Kim and Moin [35] and Perot [36], the pressure-like function  is only
of the �rst-order temporal accuracy of the pressure. In addition, the relationship between the
�rst intermediate velocity and the true velocity obtained by summing Equations (19) and (21)
reads

un+1
i = u∗i +

�t
J−1 Gi( n+1 −  n)

= u∗i +O(�t2) (23)

Equation (23) implies that the physical boundary velocity can be used as the boundary con-
dition of u∗i in solving Equation (18) without degrading the overall time accuracy. For a
general three-step fractional step method. e.g. Kim and Moin [35] and Perot [36], the bound-
ary value of u∗i has to satisfy a modi�ed equation to maintain the second-order accuracy.
A recent improvement of three-step fractional step methods by Brown et al. [37] achieves
fully second-order temporal accuracy by adequately coupling the approximation of pressure
gradient in the prediction step, pressure update equation and boundary condition. Three con-
clusions about the four-step fractional step method can be drawn. First, the splitting error is
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of the second order in time. Second, the pressure-like variable is of the second-order temporal
accuracy of the real pressure. Third, there is no special treatment on the boundary condition
of u∗i to maintain a consistent second-order temporal accuracy.

3.2. Numerical methods for level set function

As mentioned above, Equation (11) is a Hamilton–Jacobi type equation. Discontinuities in
derivatives are easily produced even if the initial conditions are smooth, and furthermore,
such solutions are in general not unique. Numerical schemes must be speci�cally designed
to converge to a unique viscosity solution that satis�es the entropy condition singling out a
physically generalized solution [38]. The key idea to the entropy condition is monotonicity
preserving. Such schemes include TVD (total variation diminishing), ENO and weighted ENO
(WENO). TVD schemes generally degenerate to �rst-order accuracy at smooth extrema while
ENO and WENO maintain the global high-order schemes [39]. The ENO scheme was orig-
inally developed for hyperbolic conservation laws by Harten et al. [40] and later extended
to Hamilton–Jacobi equations by Shu and Osher [41] motivated by the observation of the
close relationship between conservation laws and Hamilton–Jacobi equations. The basic idea
of ENO is to choose the locally ‘smoothest’ stencil among several candidates to approximate
the numerical �uxes at the cell faces, so that the numerical viscosity is adjusted adaptively
by measuring the local smoothness of the solution to eliminate the Gibbs phenomenon, i.e.
spurious oscillation, near the discontinuity. ENO schemes maintain a uniform high order
accuracy even at a discontinuity. The higher order scheme of ENO is obtained inductively on
the lower order ENO by making use of a hierarchy of divided di�erences, and that makes
the implementation of high order ENO schemes rather straightforward. The multidimensional
ENO scheme can be conveniently extended from the one-dimensional ENO scheme in a
dimension-by-dimension way.
Equation (11) is advanced with the third-order TVD Runge–Kutta scheme by Shu and

Osher [41] which is TV (total variation) stable.

�(1) =�n − �t
J−1R(�

n)

�(2) =
3
4
�n +

1
4
�(1) − �t

4J−1R(�
(1))

�n+1 =
1
3
�n +

2
3
�(2) − 2�t

3J−1R(�
(2)) (24)

where R(�)= �(Ui�)=�	i.
Let (U;V;W ) and (	; �; �) denote the components of Ui and 	i, where i=1; 2; and 3,

respectively. We set the grid distance on the transformed computational grid to unity in
all dimensions, i.e. �	=��=��=1. The spatial operator R is discretized for the control
volume (i; j; k) in a conservative manner,

�(Um�)
�	m

= (U�)i+1=2; j; k − (U�)i−1=2; j; k + (V�)i; j+1=2; k − (V�)i; j−1=2; k
+(W�)i; j; k+1=2 − (W�)i; j; k−1=2 (25)
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The volume �uxes U , V and W are de�ned at the cell faces, whereas � is de�ned at the cell
centre. Thus, the cell face values of � are constructed by the third-order ENO interpolation
scheme [41].
Denote

��−
i =�i; j; k − �i−1; j; k ; ��0i =�i+1; j; k − �i; j; k ; ��+i =�i+2; j; k − �i+1; j; k

�2�−
i =�i−2; j; k − 2�i−1; j; k + �i; j; k ; �2�0i =�i−1; j; k − 2�i; j; k + �i+1; j; k

�2�+i =�i; j; k − 2�i+1; j; k + �i+2; j; k ; �2�++i =�i+1; j; k − 2�i+2; j; k + �i+3; j; k

The second-order ENO is formulated as

�(2)i+1=2; j; k =�upi+1=2; j; k + 1=2 max[sign(Ui+1=2; j; k); 0]m(��−
i ; ��0i )

+ 1
2 min[sign(Ui+1=2; j; k); 0]m(��0i ; ��

+
i ) (26)

where

�upi+1=2; j; k =

{
�i; j; k if Ui+1=2; j; k¿0

�i+1; j; k otherwise
is the �rst-order upwind value:

m(a; b) =

{
a if |a|6|b|
b otherwise

sign(a) =



1 if a¿0

0 if a=0

−1 if a¡0

The third-order ENO is formulated as

�(3)i+1=2; j; k =�(2)i+1=2; j; k +
1
3 max[sign(Ui+1=2; j; k); 0]{max[c−i ; 0]m(�2�−

i ; �2�0i )

+ 1
2 min[c

−
i ; 0]m(�2�0i ; �

2�+i )}
+ 1

3 min[sign(Ui+1=2; j; k); 0]{ 12 max[c+i ; 0]m(�2�0i ; �2�+i )
+ min[c+i ; 0]m(�

2�+i ; �2�++i )} (27)

where

c−i = c(��−
i ; ��0i )

c+i = c(��0i ; ��
+
i )

c(a; b) =

{
1 if |a|6|b|
−1 otherwise
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The other cell face values of �, such as �i; j+1=2; k , �i; j; k+1=2, etc., are approximated in the
same way. Clearly, Equation (16) is also a Hamilton–Jacobi equation. We apply a second-
order ENO scheme as follows:
Denote

dx ≡ �d
�x

; �x−i ≡ xi; j; k − xi−1; j; k ; �x+i ≡ xi+1; j; k − xi; j; k

(1) Approximation of derivatives
First-order approximation:

d(1)−x =
@	
@x
(di; j; k − di−1; j; k) +

@�
@x
(di; j; k − di; j−1; k) +

@�
@x
(di; j; k − di; j; k−1)

d(1)+x =
@	
@x
(di+1; j; k − di; j; k) +

@�
@x
(di; j+1; k − di; j; k) +

@�
@x
(di; j; k+1 − di; j; k)

Second-order approximation:

d(2)−x = d(1)−x +
�x−

2
�2d−

�x2

d(2)+x = d(1)+x − �x+

2
�2d+

�x2

where

�2d−

�x2
=minmod (d1; d2)

�2d+

�x2
=minmod (d2; d3)

minmod(a; b) =

{
sign (a)min(|a|; |b|) if a · b¿0
0 otherwise

d1, d2 and d3 are the central di�erence approximations of �2d=�x2 ≡ (@	m=@x)�=�	m((@	n=@x)
�d=�	n) on stencils 1(xi−2; j; k ; xi−1; j; k ; xi; j; k), 2(xi−1; j; k ; xi; j; k ; xi+1; j; k) and 3(xi; j; k ; xi+1; j; k ; xi+2; j; k),
respectively. d(2)−y , d(2)+y , d(2)−z and d(2)+z are computed in the same way.
(2) Compute |∇d|
Let

a= d(2)−x ; b=d(2)+x

c= d(2)−y ; d=d(2)+y

e= d(2)−z ; f=d(2)+z
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De�ne

a+= max(a; 0); a−= min(a; 0)

and the same subscripts for b, c, d, e, and f.
The computation of |∇d| is performed based on Godunov’s method [13],

|∇d|=




D+ if s(d0)¿0
D− if s(d0)¡0
0 otherwise

(28)

where

D+ =
√
max(a2+; b2−) + max(c2+; d2−) + max(e2+; f2−)

D− =
√
max(a2−; b2+) + max(c2−; d2+) + max(e2−; f2+)

Apply the upwind scheme for Equation (16) to obtain

s(d0)|∇d|= max[s(d0); 0]D+ +min[s(d0); 0]D− (29)

Equation (16) is also advanced in time with the third order TVD Runge–Kutta scheme (24).

3.3. Restriction on time step

Since the convective terms, the surface tension terms, the gravity, the o�-diagonal primary
viscous terms and the subsidiary viscous terms in Equation (18) are advanced with the explicit
scheme in time, the time step must be restricted to enforce the stability of the numerical
schemes.
According to Reference [26], the time step for the surface tension reads

�t�= min
��

√
(�l + �g)�h3

4��

where �h=min(�x;�y;�z) and �� represents the transition zone where �(�)¿0.
The time step for the convective terms must satisfy the Courant–Friedrichs–Lewy (CFL)

condition:

�tu= min
�

J−1C
|U |+ |V |+ |W |

where C=0:5 is used here and � represents the whole computational domain.
The time step restrictions due to the gravity and subsidiary viscous terms are

�tg =min
�

√
�z
g

�t� =min
��

��h2

2�
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The eventual restriction on the time step is then

�tn+1= min(�tu;�t�;�tg;�t�) (30)

4. COMPUTATIONAL RESULTS

4.1. 2D lid-driven cavity �ow

To validate the four-step fractional step method presented in Section 3.1, we compute a 2D
lid-driven cavity single phase �ow on a unit square with a non-uniform grid of 48× 48.
The boundary grid cells take the minimum grid width of 0.01, and the grid distance is
expanded toward the centre lines with a stretching factor of about 2. The Reynolds number
Re=U0h=
=1000, where U0 is the velocity of the top lid, h is the cavity length and 
 is the
kinematic viscosity of the �uid. All the computations in this paper are performed on a Dell
Dimension 8200 PC with 1.8G Pentinum CPU. The computation ends after 10 000 time steps
when the residual of the pressure Poisson equation becomes of the order of 10−9. Streamline
patterns for primary, secondary, and corner vortices are shown in Figure 1(a). They are very
similar to those obtained by Ghia et al. [42]. The velocities along the vertical and horizontal
centrelines (u and w, respectively) are compared with the benchmark data by Ghia et al.
[42] in Figure 1(b). The agreement is excellent, showing the high accuracy of the four-step
fractional step method in computing the steady vortical �ow.

4.2. Evolution and reinitialization of level set function

4.2.1. A stationary circle. Reinitialization is a key procedure in LSM. To validate the numer-
ical scheme described in Section 3.2, we apply the reinitialization procedure on a stationary

- 0.5 0 0.5 1

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

1

u/U0

w
/U

0

z/
h

x/h

symbols: Ghia, et al, 1982
solid lines: present computation

(b)(a)

Figure 1. Lid-driven cavity �ow: (a) streamline pattern for primary, secondary, and corner vortices;
(b) comparison of velocity components (u; w) along the centre lines with the benchmark data.
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Figure 2. (a) Non-uniform grid for reinitialization of a circle; (b) contours of level sets at t=25.
Contour interval ��=4:0; dashed lines, uniform grid; dotted lines, non-uniform grid; thick dashed

line, initial position of the circle.

circle with an initially discontinuous level set function. The domain size is 100× 100. We
employ a uniform grid and also the non-uniform grid shown in Figure 2(a), both having a
grid size of 100× 100. The centre of the circle is located at the centre of the domain and the
radius of the circle is 30. The level set function is initially assigned a value of +100 outside
the circle and −100 inside the circle. For both grids, the thickness of interface is �xed with
�=1. In the uniform grid, there are exactly two grid cells in the transition zone, while the
number of grid cells in the transition zone may vary in the non-uniform grid. Figure 2(b)
shows the contours of � at t=25 time units. � is fairly accurately redistanced as a signed
function (|��|=1) in the whole domain except at the centre of the circle where a singularity
exists. The reinitialization performed on both grids produces the same results. The contour
of �=0 is not altered from the initial position (the thick dashed line in the �gure) by the
reinitialization procedure. That is just what is required for the purpose of area preservation.
From this case we conclude that the accuracy of the reinitialization scheme for non-uniform
grid is the same as that for a uniform grid.

4.2.2. Rotation of a slotted disk. The Zalesak’s problem of a rotating slotted disk [43] has
become a benchmark case for testing an advection scheme. A slotted solid disk rotates around
a centre with a constant angular velocity. We use this problem to measure the di�usive error
of the third-order ENO scheme on the evolution of the level set function. Here the slotted
disk has a radius of 15 and a slot width of 6. It is initially located at (50,75) in the domain
of size (100,100). The angular velocity � is set to 0.01 so that the disk returns to its original
position at every 200�(≈ 628) time units. The di�usive errors can be evaluated by checking
the degree of distortion of the disk boundary. For the sake of comparison, we employ three
grids: a uniform grid of 100× 100, a non-uniform grid of 100× 100 as shown in Figure 3(a),
and a re�ned uniform grid of 200× 200. The time step �t=0:5 is used for the re�ned uniform
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Dotted line: initial (t=0s)
Solid line : 3rd order ENO on uniform grid
Dashed line: QUICK on uniform grid
LongDash line: 2nd order ENO on uniform grid
DashDot line: 3rd order ENO on non-uniform grid

(a) (b)

Figure 3. Zalesak’s problem (rotation of a slotted disk), domain size of 100× 100: (a) non-uniform
grid 100× 100; (b) the disk boundaries by di�erent advection schemes after one revolution (t=628),

�t=1, uniform grid size of 100× 100.

grid and �t=1:0 for the other two grids. For two uniform grids, the thickness of interface
is �xed with two grid distance, i.e. �=1 for the 100× 100 one and �=0:5 for the 200× 200
one. For the non-uniform grid, the thickness of interface is �xed with �=1. Because this
is a pure advection problem with a uniform velocity �eld, we expect that a good evolution
scheme without reinitialization should adequately preserve the disk geometry. To illustrate
the e�ect of di�erent schemes on preserving complex geometries, we apply and compare the
second-order ENO scheme of Equation (26), the third-order ENO scheme of Equation (27),
and the third-order QUICK scheme for the approximation of the cell face values of � in the
evolution Equation (25).
Figure 3(b) shows that the second-order ENO is very di�usive because the slot is totally

smeared out. Thus a higher order scheme with at least third-order accuracy is required for the
evolution of complex boundaries (or interfaces). The third-order ENO evolves both the circu-
lar boundary and the slot boundary quite accurately without signi�cant distortion except near
the sharp corners. While QUICK is as well a third-order upwind scheme, the slot boundary
deviates from its original position to some degree and a small distortion near the top of the
slot is also observed. This is because QUICK tends to generate over- and under-shoots in the
vicinity of a discontinuity. With the non-uniform grid, the advection of the disk boundary is
improved at the corners and the top of the slot due to �ner grid resolution. Figure 4 shows the
rotation process obtained by the third-order ENO scheme on the �ne grid at t=0, 157, 314,
471 and 628. It is seen that the disk boundaries even in the vicinity of the corners are precisely
advected. The reinitialization scheme with area preserving is also applied for comparison. A
slight improvement is observed. A further improvement of this problem can be obtained by
combining LSM with a marker particle Lagrangian scheme developed by Enright et al. [9].
A set of massless particles are placed around the interface, advected by the velocity interpo-
lated from that of the underlying grid.
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Figure 4. Zalesak’s problem (rotation of a notched disk), grid 200× 200, �x=�t=0:5. Dotted lines,
initial position of the slotted disk; solid lines, only the third-order ENO evolution scheme is applied;

dashed lines, both the evolution and reinitialization schemes are applied.

4.2.3. Stretching of a circular �uid element. A circular �uid element is placed in a swirling
shear �ow �eld within a unit square described by

’=
1
�
sin2(�x) sin2(�z)

where ’ is the stream function. The �uid is stretched into a thin �lament by the shearing
velocity �eld. This case provides a challenging test for surface-tracking and surface-capturing
methods. Rider and Kothe [44] and Rudman [45] used it to evaluate their VOF methods. In
order to make use of the three grids employed previously in the Zalesak problem, the same
domain size is adopted here. The circle is initially centred at (50,75) with a radius of 15.
The solenoidal velocity �eld becomes

u=− sin2
( �x
100

)
sin

(�z
50

)
; w= sin2

( �z
100

)
sin

(�x
50

)
(31)

A time step of 0.5 is used for the two grids of 100× 100, and 0.25 for the grid of 200× 200.
The thickness of interface is set the same as those in the respective gird.
Figure 5 shows the stretching process of the �uid element at t=0, 100, 200 and 300 by

the three grids. The circular �uid is torn into a �lament by the shearing �ow, and becomes
thinner with increasing time. There is no appreciable di�erence by the two grids of 100× 100
at t=100 and 200, but the non-uniform grid preserves the tail of the �lament slightly better
than the uniform one. The uniform grid of 200× 200 preserves the areas of the �laments much
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Figure 5. Stretching of a circular �uid element in a swirling deformation �ow: (a) the �uid element at
the initial state; (b) the stretched �uid element at t=100; (c) the stretched �uid element at t=200; (d)
the stretched �uid element at t=300; in (b) (c) and (d), solid lines, uniform grid 200× 200; dashed

lines, uniform grid 100× 100; dashdot lines, non-uniform grid 100× 100.

better than the two coarse grids. There is no signi�cant breakup of the �laments, especially
with the grid of 200× 200, as was found in the results obtained with VOF methods [44, 45]
due to the e�ect of numerical surface tension inherent in the reconstruction procedure.
For the purpose of evaluating the errors of area preserving and the accuracy of interface

advection and deformation, the velocity �eld of Equation (31) is multiplied by cos(�t=T ), so
that the stretching process is time-reversed according to Leveque [46], where T is the pre-
scribed reversal period. The �ow slows down and the �uid is stretched out during 0¡t¡T=2.
The �ow reverses direction and the �uid shrinks back during T=2¡t¡T . The �uid element is
expected to resume its initial circular shape at t=T . We choose two periods, T=250 and 500,
to estimate the errors. Figure 6 shows that the �uid element in all the three grids return to the
original circular shape with slight deformation after one period of T =250. But for T=500,
only the �uid element in the grid of 200× 200 nearly returns to the circular shape and those
in the other two grids are deformed. This is because the �uid is stretched severely for T=500
and the advection accuracy of the �uid interface degrades if grid is not �ne enough. Table I
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Figure 6. Reversed circular �uid element after one period T : (a) T =250; (b) T =500; dotted lines,
initial contour of the circular �uid; solid lines, uniform grid 200× 200; dashed lines, uniform grid

100× 100; dashdot lines, non-uniform grid 100× 100.

Table I. Area error after one period for a circular �uid in the time-reversed swirling deformation �ow.

Grid % area error (T=250) % area error (T=500)

Uniform grid (100× 100) 0.687 0.09
Non-uniform grid (100× 100) 0.42 −1:635
Uniform grid (200× 200) 0.038 1.36

shows the area errors calculated by

�A=
A(t)− A(0)

A(0)

where A(t)=
∫
� H (�) d� is the total area of the �uid element at time t. The total area of

the �uid element in all cases is well preserved. Although the area for the case of T=500
on the uniform grid of 100× 100 appears to be preserved better than others, its interface is
severely deformed. From this test, we conclude that the current LSM can resolve the stretched
interface on the scale of the grid cell without bringing in signi�cant arti�cial surface tension
e�ects. A similar problem is simulated with the hybrid particle level set method by Enright
et al. [47]. Very accurate results are observed even with a pretty coarse grid.

4.3. Applications of the coupled system for free surface �ows

4.3.1. Travelling solitary wave. Propagation of a solitary wave is a simple and practical free
surface problem that has been studied experimentally and numerically. We aim to ascertain
whether LSM can predict the viscous damping and run-up on a vertical wall of a travelling
solitary wave in a canal, as shown in Figure 7. Here, h is the depth of still water and the
subscripts a and w denote air and water, respectively. The channel size is 20h× 2h. We set
the theoretical wave speed Cw =

√
gh=1:0m=s, the Reynolds number Re=Cwh=
w =5× 104,

the viscosity ratio 
a=
w =15, and the density ratio �a=�w =1:2× 10−3 (these ratios are also
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Figure 7. Illustration of the formation and travelling of a solitary wave in an enclosed channel.

employed for all subsequent free surface �ow cases). A grid of 200× 120 is used. The grid
distance is uniform in the x direction, and uniform within the range (0; A0) in the z direction
then expands to the top and bottom boundaries. The half-thickness of interface � is �xed with
two grid distance 2�z. To generate a solitary wave, one can make use of Laitone’s analytical
approximation [48]. Here we release an initially still water surface with a Boussinesq pro�le
[49] from the left vertical wall which is in hydrostatic balance,

A(x; 0)=A0= cosh
2
(√

3A0
2

x
)

After t=6:0 s, the wave has escaped from the in�uence of the left wall boundary and may
be regarded as a solitary wave. This time is set as the initial time of the solitary wave
propagation. Grid points cluster between 06z6A0 with an interval �z=0:01h to resolve the
wave. Because of the large density ratio of air and water, the top boundary condition has
negligible e�ects on the motion of the solitary wave, and therefore no-slip boundary condition
is applied for simplicity.
Figure 8(a) shows the travelling train of the solitary wave and its climb at the right vertical

wall for the case A0=h=0:4. We see the slight damping of the wave amplitude due to the
viscous e�ects. The wave speed measured from Figure 8(a) is 1.05 which is close to the
theoretical value. Figure 8(b) shows a typical velocity �eld at t=4:0 s. A vortex centred at
the wave top is observed.
To quantify the viscous damping characteristics of the wave, we compute three waves with

di�erent initial amplitudes, and compare the results with those predicted by Mei’s perturbation
theory [50]

A−1=4
max =A−1=4

0 max + 0:08356
(


w
C1=2w h3=2

)1=2 Cwt
h

(32)
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Figure 8. (a) Travelling trains of a solitary wave; (b) a typical velocity �eld of a solitary wave.

where Amax is the amplitude of the solitary wave, and A0 max is the amplitude at the initial
state. Figure 9 shows that the smaller A0 max=h is, the computation agrees better with the
perturbation theory. That is because Equation (32) is valid only for A0 max=h60:1.
Another quantity for comparison is the wave run-up (the highest point) at the right vertical

wall. We compute nine cases with di�erent initial wave amplitudes and measure the run-ups at
the right wall boundary. The computational results are compared with the experimental data by
Chan et al. [51] in Figure 10. Ac in the x axis of the �gure is the amplitude of the solitary wave
in the middle of the horizontal distance of the computational domain as shown in Figure 7.
The agreement between computation and experiment is very good for Ac=h¡0:3. After the
value 0.3, the experimental data exhibit some scatter. Overall, these results demonstrate that
the present LSM can accurately predict the viscous damping characteristics without introducing
signi�cant numerical damping e�ects.
To further quantify the numerical errors, we compute the mass error de�ned as

�M =
M (t)−M (0)

M (0)
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Figure 9. Damping rate of solitary waves.
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Figure 10. Wave run-up versus incident wave amplitude.
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Figure 11. (a) Schematic of two-dimensional broken dam; (b) non-uniform
grid for two-dimensional broken dam.

where M (t)=
∫
� �H (�) d� is the total mass of water at time t. The numerical mass error is

smaller than 0:01% at t=20 s for the case A0 = 0:4h and is 0.0085% for the case A0 = 0:2h
at the same time. This shows that the present numerical scheme conserves mass quite well.

4.3.2. 2D dam breaking. The collapse of a water column on a rigid horizontal plane is also
called a broken-dam problem. It is used to simulate the abrupt failure of a dam, in which an
initially blocked still water column starts to spread out after the blocking is removed. It has
been experimentally studied in detail by Martin and Joyce [52] to investigate the spreading
velocity and the falling rate of water columns. The motion of the water was recorded by
cine-photography at about 300 frames per second. One of their cases, a square water column
with length a=214 in., is employed here to verify the present LSM. This problem was also
studied by Kelecy and Pletcher [9] in their numerical simulation.
The computational domain is 5a× 1:25a, the same as that employed by Kelecy and Pletcher.

It is sketched in Figure 11(a). s and h denote the surge front position and the remaining height
of the water column, respectively. These parameters are used to measure the spreading velocity
and the falling rate of the water column. Our numerical experiments are performed in a closed
container with wall boundaries. We use a uniform grid of 200× 50 and a non-uniform grid
of 160× 40 with grid points clustered near the left wall, the right wall, the bottom wall
and the top and right boundaries of the initial water column as shown in Figure 11(b). The
half-thickness of interface � is �xed with two grid distance 2�x for the uniform grid case,
which is multiplied by 1.12 for the non-uniform grid case. The still water column is initially
in hydrostatic balance. The surface tension e�ect is examined by keeping or removing the
surface tension term in Equation (10). The time is non-dimensionalized by tg=

√
a=g in all

the plots in 2D and 3D broken dam �ows.
Figure 12(a) shows the comparison of the surge fronts between the present computations

and Martin and Joyce’s experiment. The e�ect of surface tension on the surge fronts is
indistinguishable in the �gure. The results with the non-uniform grid deviate from those of
the uniform grid only slightly in the �nal stage but the di�erence is well within experimental
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Figure 12. Two-dimensional broken dam: (a) surge front position s versus non-dimensional time;
(b) remaining water column height h versus non-dimensional time.

uncertainties. Overall, the water spreading velocity is provided quite accurately by the present
LSM. Figure 12(b) shows the comparison of the remaining water column height between
computation and experiment. The agreement is excellent. It is seen that surface tension and
the di�erences in the grids do not considerably a�ect the results.
Snapshots of water positions and the velocity �elds in the whole computational domain

at the selected times calculated with the uniform grid are displayed in Figure 13. The water
column collapses and accelerates toward the air due to the pressure di�erence between the
adjacent water and air along the right boundary of the initial water column. The largest
pressure di�erence is found at the right lower corner of the water column where the water is
greatly accelerated and moves rapidly along the bottom wall. Air is entrapped by the water,
forming an air bubble, when the surge front is re�ected from the right wall and falls into the
bottom water pool (Figure 13f), and an elongated thin surge is created by the splashing of
the surge front (Figure 13g). The velocity vector �elds reveal that a large vortex is formed
in the air region in the vicinity of the water surface and accompanies the surface motion at
all times. The strongest motion (the largest velocity) always occurs in the air region in the
vicinity of the surge front.
Figure 14 shows the time history of the mass errors by the uniform and non-uniform grids.

In general, mass is conserved quite well considering the fast-transient surface motion and
large topological changes of the free surface. Mass error can be further reduced by employing
a �ner grid. To study the e�ect of the thickness of interface on the computational results,
�ve di�erent thicknesses are applied on the uniform grid. Figure 15 shows the e�ect of the
half-thickness of interface � on the spreading speed of the surge front. It turns out that the
results are not very sensitive to the choice of the thickness of interface. But there exists a
tendency that a larger interface thickness leads to more deviation from the experimental data.
Even though it is not shown here, there is almost no discernible discrepancy on the remaining
water column height among these �ve thickness.

4.3.3. 3D dam breaking. To demonstrate the ability to simulate 3D free surface �ows using
the present LSM, we consider the breaking of a cubic water column sketched in Figure 16.
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Figure 13. Free surface position (left pictures) and velocity vectors (right pictures) at selected times by
the uniform grid; the shadow areas in the left �gures represent the water, the lines in the right �gures

represent the position of free surface.

The computational domain size is 5a× a× 1:25a in the (x; y; z) directions. A uniform grid of
200× 24× 50 is used. The thickness of interface is same as that in the 2D uniform grid case.
The top, bottom, left and right boundaries of the computational domain are all prescribed
as walls. We apply two types of boundary conditions for the boundaries in the spanwise
(y) direction: no-slip and periodic. The former means that the computational domain is an
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Figure 14. Mass errors of two- and three-dimensional broken dam cases versus non-dimensional time.
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Figure 15. E�ects of the thickness of interface on the spreading velocity of surge fronts, where
� is the half-thickness of interface.

enclosed container; the latter implies that the computational domain is a short segment of a
wide container in which we would expect essentially 2D �ow. These simulations assess the
e�ect of the side boundary on the structure of the surge front and the entrapped air bubble.
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Figure 16. Schematic of three-dimensional broken dam.
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Figure 17. Three-dimensional broken dam: (a) surge front positions versus non-dimensional time;
(b) remaining water column height h versus non-dimensional time.

As before, we �rst examine the spreading velocity and the falling rate of the water column.
Figures 17(a) and 17(b) show that the two quantities are in good agreement with experimental
data. Note that the surge front and the remaining water column height in these �gures are
measured in the centre plane in the spanwise direction. There is no obvious di�erence between
the results obtained by di�erent side boundary conditions. As in the 2D cases, surface tension
does not have a considerable e�ect on the results.
Figure 18 shows snapshots of water surface position and the velocity �elds in the centre

plane in the spanwise direction at the selected times for the case with the periodic bound-
aries. The free surface shapes are essentially 2D. Figure 19 shows the results with the wall
boundaries. The �ow does not show any obvious three-dimensionality until at time T =8:0
(Figure 19g). The entrapment of air by the water and formation of an elongated thin surge due
to the splashing of the surge front as in the 2D cases are clearly observed in both Figures 18
and 19. Figure 20 shows close-up views of the surge fronts and rear views of the air bubbles
observed in Figures 18g and 19g. The surge front in Figure 20(a) is basically 2D because of
the periodic boundary conditions for the side walls, while it has a tongue-like shape in Figure
20(b) due to the e�ects of the wall boundary layers. The entrapped air bubble in Figure 20(c)
for the periodic case shows a quasi-cylindrical shape. Interestingly, the entrapped air bubble
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Figure 18. Free surface position (represented by the shallow areas in the left pictures) and velocity
vectors in the centre plane of the container (right pictures, lines represent free surface) at selected

times for the periodic boundary case without surface tension.

in the wall boundary case shows a symmetric horse-shoe shape in Figure 20(c), and much
of the air is concentrated in the central part of the bubble. Despite the three-dimensionality
of the free-surface in Figure 19(g), the sliced free surface shape in the centre plane in the
spanwise direction (in the right vector picture) is very similar to that in Figure 18g. The mass
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Figure 19. Free surface position (represented by the shallow areas in the left pictures) and velocity
vectors in the centre plane of the container (right pictures, lines represent free surface) at selected

times for wall boundary case without surface tension.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:853–884



882 W. YUE, C.-L. LIN AND V. C. PATEL

Figure 20. Close-up views of the surge fronts and rear views of entrained air bubbles in Figures 18g and
19g; (a) and (c) for periodic boundaries; (b) and (d) for wall boundaries.

errors for both the 3D cases are also shown in Figure 14. The mass preservation is somewhat
better than in the 2D cases.

5. CONCLUSIONS

This paper has presented the coupling of 3D incompressible Navier–Stokes equations with
the level set method in a curvilinear co-ordinate system. The equations are discretized by
the �nite volume method on a non-staggered grid with the four-step fractional step method.
It is shown that the splitting error in the four-step fractional step method is second-order
in time, the pressure-like variable is also second-order accurate in time to the real pressure,
and no special treatment is required for the boundary conditions of the intermediate velocity
to maintain consistent time accuracy in the numerical schemes. The four-step fractional step
method was tested by calculation for the lid-driven cavity �ow. The computational results
show excellent agreement with well known benchmark tests. The level set evolution and
reinitialization equations were solved with ENO schemes formulated in the curvilinear co-
ordinates. They were validated against benchmark tests, namely, the reinitialization of a circle,
Zalesak’s problem and the stretching of a circular �uid element in a swirling shear �ow.
The coupled system was applied to a 2D travelling solitary wave, and 2D and 3D broken

dam problems. The computational results show excellent agreement with theoretic predictions
and the experimental data. Two types of spanwise boundaries were examined in the 3D
broken dam problem, namely the periodic boundaries and the wall boundaries. The former
shows essentially 2D �ow, while the three-dimensionality shows up in the latter case after
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some time. Quite complex free surface patterns are revealed by the present results, including
the large vortices in the solitary wave case as well as the dam breaking cases, air entrapment
in the water, air splashing of the water surge front in the 2D and 3D dam breaking cases. The
mass conservation is preserved quite well by the present numerical schemes in all the cases.
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